inscription
PORTAIL D'INFORMATION GÉOGRAPHIQUE

A test of equilibrium theory and a demonstration of its practical application for predicting the morphodynamics of the Yangtze River

Auteur(s) et Affiliation(s)

HUANG, H.Q.
Key Lab. of Water Cycle and Related Land Surface Processes, Inst. of Geographic Sciences and Natural Resources Research, CAS, Beijing, Chine
DENG, C.
Key Lab. of Water Cycle and Related Land Surface Processes, Inst. of Geographic Sciences and Natural Resources Research, CAS, Beijing, Chine
NANSON, G.C.
School of Earth and Environmental Sciences, Univ., Wollongong, Australie
FAN, B.
Changjiang River Scientific Research Inst., Wuhan, Chine
LIU, X.
Key Lab. of Water Cycle and Related Land Surface Processes, Inst. of Geographic Sciences and Natural Resources Research, CAS, Beijing, Chine
LIU, T.
Changjiang River Scientific Research Inst., Wuhan, Chine
MA, Y.
Key Lab. of Water Cycle and Related Land Surface Processes, Inst. of Geographic Sciences and Natural Resources Research, CAS, Beijing, Chine


Description :
Taking the width/depth ratio of a river channel as an independent variable, a variational analysis of basic flow relationships shows that alluvial-channel flow adjusts channel geometry to achieve stationary equilibrium when the condition of maximum flow efficiency (MFE) is satisfied. As a test of the veracity of MFE and to examine if this theory of self-adjusting channel morphodynamics can be practically applied to large river systems, this study examines the degree of correspondence between theoretically determined equilibrium channel geometries and actual measurements along the middle and lower Yangtze River. Using 4 different forms of the Meyer-Peter and Müller bedload relation and relations of flow continuity and resistance the AA. show that the Meyer-Peter and Müller bedload relation modified on the basis of MFE theory predicts channel dimensions most accurately when applied to the middle and lower Yangtze River. This provides convincing evidence supporting MFE equilibrium theory.


Type de document :
Article de périodique

Source :
Earth surface processes and landforms, issn : 0197-9337, 2014, vol. 39, n°. 5, p. 669-675, nombre de pages : 7, Références bibliographiques : 1 p.

Date :
2014

Editeur :
Pays édition : Royaume-Uni, Chichester, Wiley

Langue :
Anglais
Droits :
Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI)